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Abstract

TemplateTagger is a C++ package for jet substructure analysis with Template Overlap
Method. The code operates with arbitrary models within fixed-order perturbation theory and
arbitrary kinematics. Specialized template generation classes allow the user to implement any
model for a decay of a boosted heavy object. In addition to template overlap, the code provides
ability to calculate other template shape and energy flow observables. We describe in detail the
structure of the package, as well as provide examples of its usage.
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1 Introduction

Algorithms for tagging of boosted objects necessarily exploit observables sensitive to a parton shower
history, including color flow and hadronization. Most jet sub-structure methods can be characterized
as jet de-clustering and re-clustering algorithms, with a common feature that they perform the
analysis on the entire jet, after showering and hadronization. (see Refs. [1–19] for a review).

Tracking the parton shower history from physical final states to the hard-parton subprocesses
often becomes rather involved as the number of QCD emissions is typically very large. Details of
hadronization only further complicate the analysis. The Template Overlap Method [20–23], aims to
bridge the gap between energy flow of observed jets and partonic configurations calculated at fixed
order perturbation theory. The method allows for subjet identification in an infrared-safe way, by
providing a mapping between energy-unweighted variables and the template that defines the energy
flow distribution.

The primary intended use of the TemplateTagger package is the analysis of jet substructure
in High Energy Physics collider data. TemplateTagger allows the user to design a custom
boosted jet analysis for a variety of scenarios by using the same basic three-stage approach. First,
the user generates sets (or “catalogs”) of templates by scanning over a phase space of the parton
decay daughters of a massive particle of mass M and transverse momentum pT . Second, the
TemplateTagger code performs template matching on an event-by-event basis whereby candidate
signal jets are located in the η−φ space. Finally, the events are tagged using best matched templates
as approximate subjet locations. The overlap approach has several important advantages over other
jet substructure algorithms commonly used at hadron collider experiments:

• TemplateTagger is model independent. The user is required to define a template model,
while the code will efficiently search for the matching subjet-like structures in the jet energy
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flow patterns.

• The pattern recognition based approach permits an efficient way of determining the jet topology
which takes into account the event kinematics (jet mass, subjet asymmetry, etc.).

• TemplateTagger tools can be used to preserve as much energy flow information as possible,
which is particularly useful for events where the energy distribution is all that is available.
This information is presented in a well-organized form convenient for a detailed analysis of jet
substructure.

• Reconstructed subjets have well defined shapes insensitive or weakly sensitive to pileup and
underlying event.

TemplateTagger is a C++ library which provides basic implementation of the Template
Overlap Method for jet substructure. We designed the code around the FastJet [24] package of jet
algorithms with the aim at easy implementation into existing jet analysis tools. TemplateTagger
is also a testbed containing programs and routines for generating template data sets, collecting
and analyzing statistics on the performance of template overlap and jet shapes, and visualizing the
structure of these events. The package can be downloaded from http://tom.hepforge.org/.

In addition to overlap analysis, TemplateTagger provides the necessary tools to analyze a
boosted jet using observables constructed out of best matched templates. We provide implementations
of various template-based jet shapes and energy flow observables such as Template Planar Flow,
Template Angularity, etc.

This manual describes how to download and install TemplateTagger, how to use the main
libraries, as well as how to change its configuration for different overlap measures and template catalogs.
Finally, the manual shows how to use the sample programs for testing purposes and basic data
analysis. In section 2, we briefly introduce the physics behind the commands of TemplateTagger.
We give a short description of the TemplateTagger code structure in section 3. Section 4 lists
several possibilities for further extensions of the program. Appendices A and B discuss boost-invariant
implementations of the template generation and various jet shape observables. Appendix C contains
the detailed syntax and functionality of all relevant internal methods.

2 Physics Overview

The current version of TemplateTagger allows the user to study the substructure of massive
high-pT jets for various models. The user defines a model by specifying a catalog of partonic decay
configurations, labelled as f , which are taken to represent the decays of a heavy particle of mass M
at a given pT . In addition, one has to specify a functional measure to quantify agreement between
the energy flow of a jet and the flow of each template. For each jet candidate, the overlap function
is defined as

OvN = max
{f}

exp

− N∑
a=1

1

σ2
a

ε pT,a −∑
i∈j

pT,i F (n̂i, n̂
(f)
a )

2 (1)
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where {f} is the set of templates defined for the given jet pT , pT,a are the transverse momenta of
the heavy particle (or resonance) decay daughters for the given template, pT,i is the pT of the ith jet
constituent (or calorimeter tower, topocluster, etc.). The parameter ε serves to correct for the energy
emitted outside the template subcone. The first sum is over the N partons in the template and
the second sum is over jet constituents. The kernel functions F (n̂, n̂

(f)
a ) restrict the angular sums

to (nonintersecting) regions surrounding each of the template momenta. We provide two concrete
implementations of kernels: a Gaussian around each of the directions of the template momenta with
normalization F (0, n̂

(f)
a ) = 1,

F (n̂i, n̂
(f)
a ) = exp

[
−(∆R)2/(2ω2

a)
]
, (2)

and a normalized step function that is nonzero only in definite angular regions around the directions
of the template momenta pi,

F (n̂i, n̂
(f)
a ) =

{
1 if ∆R < Ra
0 otherwise , (3)

where ∆R is the plain distance in the (η,φ) plane. The parameters ωa (Ra) determine the radial
scale of the template subjet. Together with the energy resolution scale σa, these are the only tunable
parameters of the model. A few possible strategies to determine the optimal values of σa and Ra are
as follows:

• Choose the best parameters according to some optimization criterion (e.g., optimize the tagging
efficiency and background rejection ) Use the same parameters in every event.

• For each event, make a choice of parameters for which the overlap is maximized. Estimate the
stability of the configuration.

• Choose the parameters separately for each template, e.g. using a pT -dependent scale for
template matching.

Template overlap provides a mapping of final states j to partonic configurations f [j] at any given
order. The best matched template f [j] can be used to characterize the energy flow of the jet, giving
additional information on the likelihood that it is signal or background. Furthermore, we can derive
additional jet shape information out of f [j] to further increase the rejection power of the method.

It is important to realize that other choices for the functional measure and kernel functions
can easily be implemented, and we encourage the reader to explore them. The choice of template
parameters is largely dependent on the application of template overlap and the user’s preferences.
The same is true for the template generation. Typically, the choice of template libraries is dependent
upon the emphasis sought. The commands detailed in appendix C give you access to this information.

3 Program Structure and Use

We proceed to discuss the installation of TemplateTagger and execution of the example code.
We also discuss the general structure of the code, for the benefit of the user who might wish to read
or modify the source code.
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3.1 Installation

TemplateTagger runs on any architecture with a modern C++ compiler such as g++ and an
installation of FastJet. For the convenience of Unix and Mac OS X users, we provide Makefile
scripts. TemplateTagger depends on FastJet for jet finding and uses the internal FastJet
classes for implementation of basic relativistic kinematics. The current version of TemplateTagger
requires FastJet version 3.0 or higher. To use the Makefile provided with the code, simply add the
location where FastJet is installed, so fastjet-config can be found.

To install and run the TemplateTagger follow these steps:

1. In a web browser, navigate to

http://www.hepforge.org/archive/tom/

2. Download the (current) source tar-ball and extract it.

tar -xvf TemplateOverlap-X.Y.Z.tar.gz

and replacing X.Y.Z with the appropriate version number (currently 1.0.0). This will create
a new subdirectory TemplateOverlap-X.Y.Z where all the TemplateTagger source files are
now ready and unpacked.

3. Move to the resulting directory (cd TemplateOverlap-X.Y.Z) and compile one of the examples

cd TemplateOverlap-X.Y.Z/
g++ -Wall -O2 example.cc -o example \

‘${FASTJETLOCATION}/fastjet-config --cxxflags --libs‘

The code can also be compiled with the provided Makefile in environments where make is
available.

4. The previous step compiles the example program which illustrate the basic functionality
of TemplateTagger. The program reads a test event file jet.dat and a template file
template2b.dat . To execute the test program, type

./example jet.dat template2b.dat

The example code will write output to the terminal, stdout, and should read:

Hardest jet: pt, y, phi = 324.9 0 0, mass = 125.788
The best-matched templates are: (Ov2 = 0.968626)
pt, y, phi = 220.425 0.259875 0.0501516, mass = 0.
pt, y, phi = 105.432 -0.525 6.17819, mass = 0.

Now that you have seen the example application (and perhaps even compiled and run it),
you might be wondering how it works. The following explanation will provide you with a basic
understanding of the code, but the deeper implications will only become apparent after you have
finished reading the rest of the tutorial.
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3.2 The Algorithm

The core of the TemplateTagger package is a numerical implementation of the template matching
algorithm of Eq. 1. The two primary components of every template matching process are:

• Source event (j): A jet containing full information about the constituents or calorimeter
energy deposition.

• Template (f): A signal template which serves to construct a comparative measure.

The goal of template overlap analysis is to identify events j with high match to templates f . Events
with high match have a higher likelihood of being signal. The TemplateTagger package performs
the analysis in a sequence general enough to be applicable in a wide variety of HEP analyses:

1. Generate sets (or “catalogs”) of large number of N -body templates which uniformly cover the
phase space of a massive particle decay of mass M at a given pT . We suggest that templates be
generated in the lab frame by solving all the available kinematical constraints, as in Section A.
For a realistic analysis, it is usually necessary to generate several sets of templates for different
values of pT and dynamically determine which template set is appropriate based on jet pT . 1

Alternatively, templates can be generated in the rest frame of the event and boosted to the lab
frame on an event-by-event basis. Note however, that this method comes with a significant
increase in computation load, as millions of four momenta will typically have to be boosted for
each event.

2. For each template, calculate a measure d(j, f) to quantify the match (how similar the energy
flow of the template is to that particular region in the flow of the observed event) of the
template and the event

d(j, f) = exp

− N∑
a=1

1

2σ2
a

(∑
i∈Ω

E
(j)
i FN (Ω, r)− E(f)

a

)2
 , (4)

where FN (Ω, r) is a kernel function and r is the resolution scale parameter which determines
the width and the shape of the kernel.

3. For each template f and event j, store the measure d(f, j) in the result matrix R. The result
matrix is analogous to the output of many image pattern recognition algorithms. Fig. 1 shows
an example. The points represent a complete template set at a fixed pT and M of a two body
boosted Higgs decay. The color map represents the value of d(f, j) for each template state.
The regions of high d(f, j) are where most of the event pT was deposited.

4. For every event j, find the maximum value

OvN = max{f} d(j, f), (5)

where f refers to maximizing over the entire set of templates. We refer to OvN as the “peak
overlap.” Similarly, we refer to the template fmax which maximizes d(f, j) as the peak template.

1Choosing a template set based on jet pT is inappropriate in a pileup environment.

7



WH, pT=300GeV, R=1.0, r2=0.20

data
2d template

-1 -0.5  0  0.5  1

Eta

-1

-0.5

 0

 0.5

 1

P
h
i

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Figure 1: Energy flow reconstruction from 2-particle templates for a single boosted Higgs event. The
points show angular positions of a highest pT template parton (two-particle templates). Note that
the other parton is uniquely determined by energy conservation. The color map shows the overlap
score of the template parton at various positions in (η, φ). The region around η = φ = 0 is not
covered due to the kinematic constraint of ∆Rbb̄ > 2mh/p

h
T .

8



5. The previous three steps are repeated as many times as necessary using different values of N ,
e.g. for a boosted Higgs, N = 2, 3. Fig. 2 shows a typical matching process for a Higgs jet
with pT = 300 GeV analyzed with both 2- and 3-particle templates.

 1

 1.5

 2

 2.5

 3

-1 -0.5  0  0.5  1

η 

φ 

(Ov2 = 0.999433 , Ov3 = 0.746403)

Higgs
2b-templ
3b templ
b-quarks

Figure 2: Event displays for a typical Higgs jet with invariant mass near 125 GeV. The blue and
red circles indicate the region spanned by the best matched templates with N = 2, 3, respectively,
using CONE and DefaultMeasure. In this and subsequent event displays, the particles are shown in
grey cells of variable size, and the marker area for each cell is proportional its scalar transverse
momentum. The solid red dots are the positions of b-quarks in the hard process.

3.3 Efficient Generation of Template Libraries

The TemplateTagger package provides routines which generate template libraries for a given
model. The N -particle template libraries in the η−φ space can be represented using 3N -dimensional
tables with equidistant grids in the η, φ, and pT variables. The construction of such tables would
typically proceed with the help of Monte Carlo data to determine the size of pT steps and the
minimum number of templates required to maximize signal efficiency while maintaining sufficient
background rejection power.

The function TemplateBuilder in build_template.cc contains the full specification of how to
carry out the generation of templates in the lab frame. According to the method described in
Appendix A, a “template definition” should include parameters such as template pT , mass and jet
cone radius R as well as the number of template patrons N . The function call is

9



void TemplateBuilder (std::ofstream & File,
const fastjet::PseudoJet & axis,
const double etaMax,
const double phiMax,
const double minPt,
const int nEta,
const int nPhi,
const int nPt,
const double R,
const int mode),

where File is the output file into which the code writes the template catalog and axis is the four
vector of the event jet axis, providing relevant parameters like template mass and pT . etaMax and
phiMax are the maximum value of η and φ of a template parton relative to the jet axis, while minPt
is the minimum pT of a template parton (for infra-red safety). nEta, nPhi and nPt are the number
of steps in η, φ and pT respectively for the template generation. R is the anti-kT jet cone used to
cluster the template patrons. If the patrons can not be clustered into a jet of radius R, the template
is rejected. Finally, mode is one of the entries of the enumerated TemplateModel:
enum TemplateModel {TOP, HIGGS2, HIGGS3, ...};

The current implementation of TemplateTagger contains three default modes:

• TOP: Three body t decay. The top template model generates template states to cover three-
particle phase space for top decay, t→ b+W → b+q+ q̄, with the constraint (pq +pq̄)

2 = M2
W .

To construct these states, the algorithm uses a sequential scan over four angles. We take these
to be the rapidities and azimuthal angles that define the b and a W ’s daughter in the lab
frame, defined relative to the direction of the top jet axis.

• HIGGS2: Two-body Higgs decay. Two angles define the two-body state of the daughter particles.
We choose these to be the rapidity and azimuthal angle of the first daughter in the lab frame
defined relative to the Higgs direction.

• HIGGS3: Three-body Higgs decay. Four angles and one energy define the three-body state of
the daugher particles. We take these to be the the rapidities and azimuthal angles that define
the b and a b̄ directions in the lab frame, defined relative to the Higgs direction. The remaining
variable is the pT of the leading parton.

The TemplateBuilder routine surveys the kinematically-allowed template configurations by fixing
the total four momentum to axis and then taking possible values of energies (pT,i) and the angles (p̂i)
within the bounded interval as defined by ηmax, φmax and pminT . The number of variables depends
on the number of degrees of freedom of the configuration. The domain of the 3N − 4 independent
variables, p̂1, · · · , p̂N−1 and pT,1, · · · pT,N−2, that define a template is divided into a uniform grid,
according to a fixed interval, and the remaining transverse momentum pT,N−1 is obtained by applying
the restrictions of conservation of energy-momentum. The resulting groups which include negative
pT are automatically discarded. An additional restriction of

pN = P −
N−1∑
i=1

pi, (6)

10



imposes the condition P = (pT , 0, 0, EJ).

3.4 Choosing the Kernel

The optimal choice of the template matching kernel depends on the analysis strategy and the amount
of information the user has about the signal and the background. A reasonable choice of the kernel
width typically assumes at least some kinematic properties or jet shapes of the signal. In fact,
optimal choice will be different for different signals. For example, an analysis searching for a Higgs
decaying into bb̄ pairs is likely to make very different assumptions about jet substructure from a
data analysis which looks for tt̄ events in the all-hadronic 6-jet mode. It is thus both interesting
and important to look at the substructure of a jet using a variety of kernels and kernel parameters.
Table 1 lists the kernels available in the default implementation of TemplateTagger.

The kernel function F (Ω, f) should be a sufficiently smooth function of the angles for any
template state f in order to ensure infra-red safety. For instance, the kernel could be defined as
a Gaussian around each of the template momenta, which we provide with the option GAUSSIAN.
Alternatively, we may choose F to the a normalized step function that is nonzero only in definite
angular regions around the directions of the template momenta pa. This is the default option in
TemplateTagger and is implemented as an option CONE.

The TemplateTagger package also allows the user to choose from a variety of template
matching strategies to fix the energy resolution scales. A fast and simple template matching can be
performed using a single resolution scale (at one fixed cone radius or Gaussian width). This is the
setting of the FIXED option and is the default option in TemplateTagger. Alternatively, a more
sophisticated choice can also take into account more complex jet shapes. Indeed, the optimal width
is not necessarily the same for every jet in an event, as low momentum subjets tend to have wider
angular profiles. As an implementation of this feature, we propose varying cone schemes for template
matching. The scheme is similar to the fixed cone scheme, except that we allow for different cone
radii to be associated to each template particle.

Both the kernel and the energy resolution scale are set by variables in Table 1.

Enum Default option Alternate option
Jet_shape_scheme CONE GAUSSIAN

Resolution_scale_scheme FIXED VARIABLE

Table 1: Members of the Jet_shape_scheme and Resolution_scale_scheme enums which define the
choice of kernel function.

3.5 Finding the Best Matched Templates

The Template Overlap approach locates templates in the η−φ space which have higher overlap than
all of their neighbors in a template catalog. The algorithm of TemplateTagger is also able to
process complicated energy flow patterns, e.g. when templates contain an arbitrarily large number
of particles. MatchingMethod class provides the implementation of the algorithm which is responsible
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for the Template Overlap analysis as a whole. The most important part of the MatchingMethod
declaration (in the “matching.hh” header file) is the constructor of the MatchingMethod class

MatchingMethod(const string & templateFile, TemplateDefinition templDef)

The constructor arguments have the following meaning:

• templateFile A string containing the name of the template-catalog file.

• templDef An object which collects several settings to use for template matching. See Section
4.4 for more details.

The simplest way of performing template matching with TemplateTagger consists in constructing
an object of this class at the beginning of the data analysis code and then running its getOv()
member function on each jet. Fig. 3 shows a schematic representation of the algorithm.

The MatchingMethod loads the template catalog from a file using the default constructor. The
member function getOv then reads a fastjet::PseudoJet and passes the input through a sequence
of template matching functions which processes the following sequence:

• Load an input event and a test configuration (template)

• Perform a template matching procedure by using the TemplateOverlap function matchTemplate
with either of the two matching methods described before.

• Normalize the output of the matching procedure so that unity means perfect match.

• Localize the template with the highest matching probability

• Return the maximum value of overlap and best matched configuration (maximum overlap
template).

The getOv function returns the results of the maximization procedure in the format of temple_t
(defined in Section 4).

where the first element of the ordered pair is the value of the overlap and the second one
contains a vector of template four momenta. The user can pass the result of getOv to several
FunctionOfPseudoJets which compute jet observables from the momenta in the best matched
template.
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Library

Y

fastjet::PseudoJet

MatchingMethod

MatchingMethod::getOv
double::maxOv

vector<PseudoJet>::maxTempl
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FunctionOfPseudoJet
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thetaBar(maxTempl)
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Figure 3: The structure of a typical TemplateTagger analysis. A MatchingMethod gets input
from a template catalog file using the default constructor MatchingMethod::MatchingMethod. The
method getOv reads a fastjet::PseudoJet and passes the input through a sequence of template
matching functions that are run sequentially. The output of getOv is then passed to several
FunctionOfPseudoJets that compute jet observables based on angular distributions of the partons in
the best matched template.
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3.6 Sample Program

An example program in short.cc provides the basic functionality of TemplateTagger. More specif-
ically, the example shows how the MatchingMethod class can be used to perform basic substructure
analysis with the template overlap method.

example requires only one input file: the template catalog. For the purpose of the example,
consider a catalog of two-body templates stored in a file template2bf.dat. the command line call for
example is

./example template2bf.dat

Below, we give a detailed description of the relevant code snippets.

1. Include the appropriate header files. The core functionalities of TemplateTagger are
contained in the file matching.hh.

#include "matching.hh"
#include "fastjet/FunctionOfPseudoJet.hh"
using namespace TemplateOverlap;

2. Declare run parameters, event and result containers, as well as the match method. Set the jet
cone radius R = 1.0 and the template sub-cone radius r = 0.2 as well as σa = paT /3, where
paT is the transverse momentum of the ath template parton. All settings are put into the
TemplateDefinition object.

/// Set Run Parameters
double R = 1.2; // anti-kt parameter
double R2 = 0.40; // template subcone radius
double sigma = 0.333; // template Gaussian width
myParams = TemplateDefinition(R2, sigma);

3. Define the event to be analyzed. For the purpose of the example, we hard-coded an event.

/// An event with three-particles
std::vector<fastjet::PseudoJet> particles;
particles.push_back( fastjet::PseudoJet( 112.0, -19.8, -56.1, 126.9 ));
particles.push_back( fastjet::PseudoJet( 110.6, 13.9, 25.3, 114.4 ));
particles.push_back( fastjet::PseudoJet( 102.3, 5.9, 30.8, 107.1 ));

4. Define the template matching instance which uses the template catalog of template2bf.txt
and the parameters stored in myParams.

/// Create an instance of MatchingMethod for the analysis.
/// The ctor also loads the templates
MatchingMethod myCone(argv[1], myParams);

14



5. Analyze the event. temp.first contains the value of maximum overlap. temp.second contains
the best matching template.

/// Find the best matched template
templ_t result = myCone.getOv(jets[0]);
std::vector<fastjet::PseudoJet> maxTempl = result.second;
double maxOv = result.first;

The getOv method performs the core functions of the Template Overlap Method. As such, we
deem it important to provide a more detailed discussion of its structure.

1. Let us check the getOv function. First define the matching method and make a copy of the
source event:

/// Defining TemplateOverlap parameters
int match_method = CONE;

/// Source jet to matrix
jet_t jet_mat;
myJet.copyTo(jet_mat);

The jet_t typedef is a vector of particles, that collects basic kinematic information about the
constituents in a jet, i.e. their η, φ and pT .

2. Next it creates the matrix that will store the results for each template location:

/// Create the result matrix
vector<double> result;

3. Use the TemplateOverlap function matchTemplate to search for matches between a template
and a input event

/// Do the matching and normalize
matchTemplate(jet_mat, _templates, result, match_method);

the arguments are naturally the input event j (jet_mat), the templates f (_templates), the
result R (result), and the match_method

4. Use the TemplateOverlap function maximize to find the maximum overlaps (as well as their
template directions) in the result array:

/// Localizing the best match with minMaxLoc
double maxVal; int maxLoc;
maximize(result, maxVal, maxLoc );

the function calls as arguments:
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• result: the source array

• maxVal: variable to save the maximum value in the array, i.e. the maximum overlap

• maxLoc: the point location of the maximum values in the array, i.e. the best match
template

5. Convert to PseudoJet and return the result

vector<PseudoJet> peak_template = ConvertToPseudoJet(_templates[_maxLoc], jet);
return std::make_pair<double, vector<PseudoJet> >(_maxVal, peak_template);

In summary, the output of getOv for any PseudoJet is the value of the overlap OvN , and also the
identity of the peak template as a vector of PseudoJets.

4 Miscellaneous Tools

4.1 Data types

We have defined two new data types, templ_t and jet_t for convenience. Here we briefly list the
new data types for completeness and clarity, as they appear throughout the TemplateTagger
code. We typically use templ_t to store the results of the overlap analysis for each event. The
double value typically holds the maximum overlap, while the vector of PseudoJet holds the best
matching template. The definitions are

1. typedef std::pair<double, std::vector<fastjet::PseudoJet> > templ_t;

2. typedef std::vector<SingleParticle> jet_t;

4.2 FastJet plugin

With the advent of FastJet 3.0+, it has become straightforward to write wrappers for jet analysis
tools around the suite of tools available in FastJet. The FastJet bare class FunctionOfPseudoJet<T>
provides a common interface for jet measurements. For the convenience of the user, we provide a class
Noverlap, defined in TemplateTagger.hh, which performs all functions to the TemplateTagger
code within the FastJet framework. The class wraps the core Template Tagger code to provide
the fastjet::FunctionOfPseudoJet interface for convenience in larger analyses. See matching.hh
for definitions of OvN and the constructor options. The relevant methods of the class are

1. Noverlap Noverlap( double R2, double sigma, const string & templateFile
, Resolution_scale_scheme variableCone, Jet_shape_scheme mode)
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Constructor for the Noverlap class. R2 is the template sub cone radius and templateFile is
the file containing the template catalog, sigma is the fraction of template parton paT used in
σa, variableCone is the scaling rule for the sub cone radius (FIXED or VARIABLE), and mode
determines the kernel function (CONE or GAUSSIAN).

2. PseudoJet templ_t result(const PseudoJet& jet) const

This function returns the results of the overlap analysis in the format of a pair of values, the
maximum value of overlap and the best matched template. See the discussion of getOv for
more information.

FastJet 3.0+ also provides a common base class for jet manipulation: Transformer. Transform-
ers can remove particles, re-arrange substructure, or tag/reject jets. The class TemplateTagger in
TemplateTagger.hh implements a generic template overlap code described in the previous sections.

The TemplateTagger class derives from Transformer, and can be constructed using a pointer to a
Selector class derived from FunctionOfPseudoJet<templ_t> which contains a value for the template
kernel width, and the name of a file containing the catalog of templates. A simple example illustrates
the implementation of TemplateTagger within the FastJet architecture:

#include "TemplateTagger.hh"
// ...
/// Set up the template tagger
SharedPtr<Noverlap> cone(new Noverlap(R2, sigma, argv[1], FIXED, CONE));
SelectorMassRange(minMass,maxMass) selector;
TemplateTagger tagger(cone.get(), selector, R2, ovcut);
/// Now tag the leading jet using template tagger
PseudoJet tagged_jet = tagger(jets);

We adopt the convention that if a given jet does not satisfy OvN >ovcut the result of the transformer
is a jet whose 4-momentum is zero. The pieces() of the resulting tagged jet correspond to the
subjets that were associated to the best matched template:
std::vector<fastjet::PseudoJet> subjets = tagged.pieces();

Additional structural information related to the value of the maximum overlap value and the best
matched template is easily accessible. For instance:
cout << "(Ov2 = " << tagged.structure_of<fastjet::TemplateTagger>().ov() <<")"

<< endl << endl;
cout << " The best-matched templates are: "<< std::endl;
PrintJets(tagged.structure_of<fastjet::TemplateTagger>().maxTempl()); ,

displays the value of maximum overlap and the four momenta of the best matched template.

4.3 Jet and Template Moments

TemplateTagger allows a user to calculate additional substructure observables. The FastJet 3
base class fastjet::FunctionOfPseudoJet<double> provides a common interface for the calculation.
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The following FunctionOfPseudoJets are available ( all defined in TemplateTagger.hh). Each function
returns a double value. Examples of their use can be found in jet_shapes.cc.

planarflow(): Calculates planar flow of the jet using longitudinally boost-invariant quantities

angularity(int a): Calculates the angularity τ−a of the jet

thetaS(): Calculates the angle between the softest template particle and the jet axis.

thetaBar(): Calculates an energy-unweighted distance between the template particles

Stretch(): Calculates the imbalance in ∆R between the peak two-body template and the two
leading subjets inside the jet.

Area(): Calculates the template area, i.e. the area in η − φ space projected by the cones
around the directions of the template particles.

4.4 TemplateDefinition

The TemplateDefinition class keeps track of all modes and parameters used during the jet clustering
and template matching processes. As such, it serves all the MatchingMethod program elements from
one central settings record. The user is allowed to access and change these settings to modify the
template matching behavior. The complete list of methods and arguments is as follows.

/// Parameters that define TemplateOverlap
class TemplateDefinition {
private:

double _subConeRadius; // subCone radius
double _sigma; // Gaussian energy resolution relative to parton pT
Resolution_scale_scheme _subConeMode; //Fixed or varying subcones
Jet_shape_scheme _mode; // Functional measure
double _minPtParton; //For infrared safety, partons are not too soft

public:
TemplateDefinition(const double subConeRadiusIn=0.20,

const double sigmaIn=0.33,
Resolution_scale_scheme variableConeIn=FIXED, Jet_shape_scheme modeIn = CONE,
const double minPtPartonIn = 10.) :

_subConeRadius(subConeRadiusIn), _sigma(sigmaIn),
_subConeMode(variableConeIn), _mode(modeIn) ,_minPtParton(minPtPartonIn) {}
// Returns the value of the template sub cone radius

double r() const {return _subConeRadius;}
//Returns the fraction of template parton p_T used as \sigma_a.
double sigma() const {return _sigma;}
//Returns the status value for the overlap calculation mode,

//i.e. fixed or varying cone
Resolution_scale_scheme variableCone() const {return _subConeMode;}
//Returns the kernel function mode
//i.e. Gaussian or Cone
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Jet_shape_scheme mode() const {return _mode;}
//Returns the minimum p_T of the template parton with smaller transverse momentum.
double minPtParton() const {return _minPtParton;}

};
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A Properties of Templates

Template Overlap Method is a systematic framework aimed to identify kinematic characteristics
of an boosted jet. A typical template configuration consists of a model template, f , calculated in
perturbation theory, which describes a “prong-like” shape of the underlying hard subprocess of a jet.
Template construction typically employs prior theoretical knowledge of the signal kinematics and
dynamics, as well as possible experimental input. For instance, Higgs 2-particle templates are sets of
2 four momenta which satisfy kinematic constraints of a boosted Higgs decay etc.

The simplest template configurations are the ones describing the kinematics of two-body processes
such as the decay of SM Higgs or W/Z bosons into quark-antiquark pairs. These are easily dealt
with by assuming the rest frame of the parent particle and producing two decay products with
equal and opposite, isotropically-selected momenta and magnitude, subject to energy conservation.
The problem of a N -body decay subtracts four constraints from the decay products’ 3N degrees
of freedom: three for overall conservation of momentum and one for energy2. The final states can
therefore be found on a (3N − 4)-dimensional manifold in the multi-particle phase space. Note that
the dimensionality of the template space increases rapidly with additional patrons. For instance, the
two body templates require only two degrees of freedom, while a corresponding four body template
space is already eight dimensional.

The question of which kinematic frame the templates should be generated in requires careful
consideration. Authors of Ref. [25] argued that a search for the global maximum of OvN could be
too computationally intensive. To improve the computation time, the template states were generated
in the Higgs rest frame using a Monte Carlo routine, and then boosted into the lab frame. While
this method worked sufficiently well for tagging a highly-boosted object(i.e. a 1 TeV Higgs jet), it

2For our purpose, a template is an object with no other properties other than its four-momenta.
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introduced residual algorithmic dependence and a certain sense of arbitrariness in the jet shape. At
lower pT the Monte Carlo approach samples mainly the templates within the soft-collinear region,
leaving other regions of phase space unpopulated. An enormous number of templates is required to
adequately cover the phase space at pT ∼ O(100 GeV), thus fully diminishing the motivation for a
Monte-Carlo approach. The simplest and most robust choice is then to generate templates directly
in the lab frame and then rotate them into the frame of the jet axis. The result is a well covered
template phase space in all relevant boosted frames. In addition, the lab frame templates result in a
significant decrease in computation time as a much smaller number of templates are needed.

We proceed to show how to generate the phase space for 2- and 3-parton final states as well as
how to generalize the results to arbitrary N .

A.1 The case of 2-body templates

First, we summarize our notation and conventions. The model template consists of a set of four
vectors, p1, · · · , pN , on the hyperplane determined by the energy-momentum conservation,∑

i

pi = P, P 2 = M2, (7)

where M,P are the mass and four momentum of a heavy boosted particle, i.e. the Higgs. For
simplicity, we treat all template particles to be massless. We work in an (η, φ, pT ) space, where η
is pseudorapidity, φ azimuthal angle and pT transverse momentum. Without loss of generality, we
can assume that the template points in the x direction (η = φ = 0). The templates are distributed
according to

pi = pT,i(cosφi, sinφi, sinh ηi, cosh ηi), i = 1, 2, 3 (8)

subject to the constraint
N∑
i=1

pi = P = (pT , 0, 0, EJ) (9)

with EJ =
√
M2 + p2

T . We find it useful to define unit vectors by

p̂i = (cosφi, sinφi, sinh ηi, cosh ηi), i = 1, 2, (10)

so that pi = pT,i p̂i.

Phase space for the 2-body decay processes is characterized by particularly simple kinematic
parameters. To illustrate, first note that the 2-particle templates are uniquely determined by one
single four momentum, p1 subject to the condition

(P − p1)2 = 0. (11)

Writing p1 = pT,1p̂1, we can solve for pT,1 in terms of the angles of the first parton

pT,1 =
M2

2(P · p̂1)
. (12)
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We see that a 2-particle template is therefore completely determined in terms of the unit vector
p̂1 as follows:

p1 =
M2

2(P · p̂1)
p̂1 (13)

p2 = P − p1. (14)

Note that we can represent such a template as a point (η̂, φ̂) in η − φ plane. These are the two
degrees of freedom, in accordance with the general result that the dimensionality of the N template
space is 3N − 4.

A.2 The case of 3-body templates

A space of five degrees of freedom allows for 3-particle templates to differ from one another in more
than one way. The 3-particle templates are determined by two four momenta, p1 and p2, subject to
the constraint,

(P − p1 − p2)2 = 0. (15)

Using p1 = pT,1p̂1 and p2 = pT,2p̂2, we can solve for pT,2 in terms of the angles of first two
partons and pT,1,

pT,2 =
M2 − 2P · p1

2(P · p̂2 − p1 · p̂2)
. (16)

A general 3-particle template is then completely specified by pT,1 and two unit vectors (or, equivalently,
four angles) p̂1 and p̂2.

A.3 Extension to arbitrary N

A generalization to an arbitrary number of particles is straight-forward. Proceeding as above, the
N -particle templates are determined by p1, · · · , pN−1 subject to the constraint,

(P −
N−1∑
i=1

pi)
2 = 0. (17)

Using pi = pT,ip̂i, we can now solve for pT,N−1 in terms of the p1, · · · , pN−2 and p̂N−1,

pT,N−1 =
M2 + 2

∑N−2
i<j pi · pj − 2P ·

∑N−2
i pi

2 (p̂N−1 · P )− 2 p̂N−1 ·
∑N−2

i pi
(18)

For the special cases of N = 2 and N = 3, this formula reduces to the above results .
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B Substructure and jet shapes

The TemplateTagger code contains implementations of several jet shape observables in addition
to the Template Overlap Method. Jet shapes are inclusive, infrared-safe observables which are
smooth functions of the energy distribution within jets. They are constructed as weighted sums over
the four-momenta of the constituents of a jet and reveal details about its inner structure, shedding
light on its partonic origin.

• A set of such jet shape observables is given by the class of angularities τa of a jet, defined by

τa ≡
1

2EJ

∑
i∈J
|pi

T|e−ηi(1−a), (19)

where a is a parameter taking values −∞ < a < 2, the sum is over all the particles in the
jet, EJ is the jet energy, pT is the transverse momentum relative to the jet direction, and
η = − ln tan θ/2 is the pseudorapidity relative to the jet direction.

Angularities, τa, are able to distinguish between QCD jets and other two-body decays. Almeida
et al. [23] showed that the discriminating power of angularities is owned to the fact that the
decays of color neutral objects are democratic, sharing energy symmetrically, whereas QCD
events with same mass are typically asymmetric.

• Planar Flow (Pf) [26–28] is another useful jet substructure observable. We defined the default
TemplateTagger implementation of Pf in terms pseudorapidity η = − ln tan(θ/2), the
azimuthal angle φ and the transverse momentum pT :

Pf =
4 det I

(tr I)2
, (20)

where I is defined by,

I =
1

mJ

∑
i

piT

(
(∆ηi)

2 ∆ηi∆φi
∆ηi∆φi (∆φi)

2

)
(21)

with mJ the jet mass, piT is the transverse energy of particle i in the jet. Here, (∆ηi,∆φi) =

~ci − ~J , where ~J = (ηJ , φJ) is the location of the jet and ~ci is the position of a cell or particle
with transverse momentum piT . Notice that the Pf definition of Eq. 20 is invariant under
boosts along the beam axis.

Planar flow describes the way energy is deposited on the plane transverse to the jet axis. It
peaks at zero for linear energy depositions and is close to unity for uniform energy configurations.
For instance, two-pronged jets, such as leading order QCD jets, are expected to leave two cores
of energy resulting in average low planar values of planar flow. On the other hand, three-prong
jets coming from hadronic decays of boosted tops, are expected to have a rather uniform planar
flow distribution. Thus planar flow can be used to separate massive boosted QCD jets from
top jets.

• Angular correlations of the template momenta which can otherwise be concealed in the numerical
values of the peak overlap are of particular value. For instance, the angular distribution of a
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jet radiation can be measured with the variable θ̄, defined as

θ =
∑
i

sin ∆RiJ ,

where ∆RiJ is the distance in the η − φ plane between the ith template momentum and the
jet axis. When measured using three-boy templates, the variable θ̄ characterizes the difference
in angular ordering in our peak templates between the signal and background. Notice that
for highly boosted jets, the 2-body version of θ simply reduces to the angle between the two
templates.

• Template Stretch is a pileup insensitive observable sensitive to the mass difference between a
jet and the peak template. First introduced in Ref. [29] template stretch is defined as:

S
(f)

bb̄
=

∆Rbb̄
∆Rf

.

where ∆Rf is the distance between the peak two-body template momenta and ∆Rbb̄ is the
distance between the two b-tagged sub-jets. A generalization of S to non-b-tagged jets and
other kinematic configurations is straightforward.

C TemplateTagger Classes and Commands

C.1 Classes

C.1.1 SingleParticle

SingleParticle is a helper class for MatchingMethod whose aim is to contain minimum information
about a particle in an event or a template, mainly its energy (or transverse momentum), rapidity
and azimuthal angle. When the particle is associated with a template, there are two variables that
contain additional, non-kinematics information: the template parton’s width parameter radius (i.e.
radius of the template sub cone), and its energy resolution sigma.

/// A helper class for MatchingMethod
class SingleParticle {

public:

// Constructors.
SingleParticle( double pTIn = 0., double yIn = 0., double phiIn = 0.)
: pT(pTIn), y(yIn), phi(phiIn), mult(1), isUsed(false), radius(0.), sigma(0.) { }
SingleParticle(const SingleParticle& ssj) : pT(ssj.pT),

y(ssj.y), phi(ssj.phi), mult(ssj.mult),
isUsed(ssj.isUsed), radius(ssj.radius), sigma(ssj.sigma) { }

SingleParticle& operator=(const SingleParticle& ssj) { if (this != &ssj)
{ pT = ssj.pT; y = ssj.y; phi = ssj.phi;
mult = ssj.mult; isUsed = ssj.isUsed;
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radius =ssj.radius; sigma=ssj.sigma;} return *this; }

// Properties of particle.
double pT, y, phi;
int mult;
bool isUsed;
double radius; //For templates
double sigma;

double deltaR2(const SingleParticle & other) const {
double dPhi = abs(phi - other.phi );
if (dPhi > M_PI) dPhi = 2. * M_PI - dPhi;
double dEta = y - other.y;
return (dEta * dEta + dPhi * dPhi );

}

};

C.1.2 MeasureFunctor

TemplateTagger provides a bare class to define custom overlap functions: MeasureFunctor. This
provides the user with some flexibility to specify different kernel functions or to build new ones for
customized template analyses. The MeasureFunctor provides the minimum bare class from which
other overlap functions can be derived. The most important part of the class declaration looks as
follows.
class MeasureFunctor {
protected:

MeasureFunctor() {}
public:

virtual double distance(const SingleParticle& particle,const SingleParticle& axis)=0;
virtual double numerator(const SingleParticle& particle,const SingleParticle& axis)=0;
std::vector<double> subOverlaps(const jet_t & particles, const jet_t& axes);
double overlap(const jet_t & particles, const jet_t& axes);

};

C.1.3 DefaultMeasure

The DefaultMeasure implements a cone-based template matching with the function

F (n̂i, n̂
(f)
a ) =

{
1 if ∆R < Ra
0 otherwise , (22)

By default, this function finds all particles within a cone of radius R from the template parton
and calculates the unweighted sum of the particles pT . By default, a fixed cone radius R is used.
This can be modified via the TemplateDefinition::set_varying_cone(). This option corresponds to
varying cone; note that for the varying cone mode to work the user needs to specify a model for
cone scaling rule (energy profile). See eShape for more details.
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class DefaultMeasure : public MeasureFunctor {
private:

TemplateDefinition _templDef;
public:

DefaultMeasure() {}
virtual double distance(const SingleParticle& particle, const SingleParticle& axis){

return std::sqrt(particle.deltaR2(axis)); }
virtual double numerator(const SingleParticle& particle, const SingleParticle& axis){

double deltaR = std::sqrt(particle.deltaR2(axis));
if (deltaR > _templDef.r()) return 0.0;
return particle.pT; } };

C.1.4 GaussianMeasure

Similar to DefaultMeasure, but uses a Gaussian kernel function

F (n̂i, n̂
(f)
a ) = exp

[
−(∆R)2/(2ω2

a)
]
,

to add the pT of each particle in a jet. It has two constructors with the same arguments as
DefaultMeasure.

class GaussianMeasure : public MeasureFunctor {
private:

TemplateDefinition _templDef;
public:

GaussianMeasure() {}

virtual double distance(const SingleParticle& particle, const SingleParticle& axis) {
return std::sqrt(particle.deltaR2(axis));}

virtual double numerator(const SingleParticle& particle, const SingleParticle& axis) {
double etaNow = particle.y;
double phiNow = particle.phi;
double rNow = particle.radius;
double weight = exp(-(etaNow*etaNow+phiNow*phiNow)/(2 * rNow * rNow));
return (particle.pT * weight);}

};

C.2 Functions

C.2.1 matchTemplate

The matchTemplate function is used to locate patterns inside the observed energy distributions within
jets which have good overlap (“match”) to the set of templates. The algorithm can handle a variety
of complicated patterns, e.g., when the templates have more than the minimum number of partons
or when there are additional kinematical constraints, such as the W mass in a hadronically decaying
top quark. The algorithm is implemented in the matchTemplate function whose prototype looks like
this:
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void matchTemplate(jet_t & jet,
const vector<jet_t> & templates,
vector<double> & result,
int match_method);

The function arguments have the following meaning:

• jet: The jet being analyzed. It must be a vector of SingleParticle.

• templates: Comparison template catalog. It must not have more particles than the source
event.

• result: Map of comparison results. It must be a one-dimensional vector of double. After the
search, its dimension is templates.size().

• match_method: Parameter specifying the functional measure or comparison method. It can
take values available in Jet_shape_scheme . See Table 1 for details.

C.2.2 maximize

Finds the global maximum in the result array and its position.

void maximize(const vector<double> & result, double & maxVal, int & maxLoc );

The parameters have the following meaning:

• result: input array

• maxVal: pointer to the returned maximum value; NULL is used if not required.

• maxLoc: pointer to the returned maximum location

C.2.3 ConvertToPseudoJet

For internal use. Converts a jet_t to PseudoJet.

std::vector<fastjet::PseudoJet> ConvertToPseudoJet(const jet_t& particles);

C.2.4 ConvertToMat

For internal use. Converts a PseudoJet to jet_t.

jet_t ConvertToMat(const fastjet::PseudoJet& jet);
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C.2.5 overlapDistance

Calculates the overlap between two jets or templates in the η, φ, pT space, assuming one jet is a
“template”. R0 is the template sub-cone radius.

double overlapDistance (jet_t & jet1, jet_t & jet2, double R0) ;

C.2.6 reset

For internal use. Clear internal flags in a jet for reuse.

void reset(jet_t & jet);

C.2.7 eShape

In some applications, one would like to have a more realistic model for the energy profile of a
template parton than simply a fixed cone. TemplateTagger provides with a simple scaling rule
for the template subcone radius that draws information from jet shape measurements at the LHC.
To compute the energy profile of a template parton, the numerical values for the integrated jet
shape measured by ATLAS are fit in different regions of jet pT . eShape returns the radius, r, that
is needed to contain 80% of the transverse momentum in a cone of radius r around the template
parton direction.

double eShape (double x)
{

double aux = 0.422258 - 0.00377161* x + 0.0000174186 * x*x -
3.50639e-8 * x *x*x + 2.53302e-11 * x*x*x*x;

return aux;
}
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